Linear Algebra I

30/01/2018, Tuesday, 14:00-17:00

You are NOT allowed to use any type of calculators.

1 Linear systems of equations

$(2+5+3+2+3=15 \mathrm{pts})$

Consider the linear system of equations

$$
\begin{aligned}
2 x-y+3 z & =a \\
x-y+z & =b \\
7 x-2 y+12 z & =c
\end{aligned}
$$

in the unknowns x, y, and z.
(a) Write down the corresponding augmented matrix.
(b) Put it into the row echelon form.
(c) Determine the values of a, b, and c such that the system is consistent.
(d) Determine the lead and free variables when the system is consistent.
(e) Find the solution set.

2 Determinants

$(5+6+4=15 \mathrm{pts})$

Consider the $n \times n$ matrix of the form

$$
B_{n}=\left[\begin{array}{ccccccc}
2 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 2 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 2 & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 2 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & 2
\end{array}\right] .
$$

Let $D_{n}=\operatorname{det}\left(B_{n}\right)$.
(a) Find D_{1}, D_{2}, and D_{3}.
(b) Expand along the first row and find numbers a and b such that $D_{n}=a D_{n-1}+b D_{n-2}$ for $n \geqslant 3$.
(c) Prove by induction on n that $D_{n}=n+1$ for $n \geqslant 3$.
(a) Let $X \in \mathbb{R}^{n \times n}$ and $S(X)=\left\{A \in \mathbb{R}^{n \times n} \mid A X+X A=0\right\}$. Show that $S(X)$ is a subspace of $\mathbb{R}^{n \times n}$. For $n=3$ and $X=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$, find a basis for $S(X)$ and find its dimension.
(b) Let a and $b \neq 0$ be real numbers. Consider the functions $f(x)=e^{a x} \sin (b x), g(x)=$ $e^{a x} \cos (b x)$ and the subspace $S=\operatorname{span}(f, g)$ of the vector space of continuous functions. Let $L: S \rightarrow S$ be given by $L(h)=h^{\prime \prime}$ where $h^{\prime \prime}$ denotes the second derivative of h. Show that L is a linear transformation. Find its matrix representation relative to the basis (f, g).

4 Least squares problem

Find the parabola of the form $y=a+b x^{2}$ that gives the best least squares approximation to the points:

x	0	1	2
y	0	2	3

5 Characteristic polynomial, determinant, and trace $\quad(5+(1+2+3+4)=15 \mathrm{pts})$
(a) Let $M \in \mathbb{R}^{n \times n}$ and $p(s)=p_{k} s^{k}+p_{k-1} s^{k-1}+\cdots+p_{1} s+p_{0}$ be a polynomial. Show that if λ is an eigenvalue of M then $p(\lambda)$ is an eigenvalue of $p(M)=p_{k} M^{k}+p_{k-1} M^{k-1}+\cdots+p_{1} M+p_{0} I_{n}$.
(b) Let $A \in \mathbb{R}^{n \times n}$ be such that $A^{2}-A+I_{n}=0$.
(i) Show that A is nonsingular.
(ii) Show that n is an even number.
(iii) Show that the characteristic polynomial of A is $\left(\lambda^{2}-\lambda+1\right)^{\frac{n}{2}}$.
(iv) Show that $\operatorname{tr}(A)=\frac{n}{2}$ and $\operatorname{det}(A)=1$.

6 Eigenvalues/vectors

$$
(1+2+4+4+4=15 \mathrm{pts})
$$

Consider the matrix

$$
M=\left[\begin{array}{rrr}
a & 2 b & 0 \\
b & a & b \\
0 & 2 b & a
\end{array}\right]
$$

where a and $b \neq 0$ are real numbers.
(a) Show that a is an eigenvalue of M.
(b) Find an eigenvector corresponding to the eigenvalue a.
(c) Find other eigenvalues of M and corresponding eigenvectors.
(d) Determine the values of a and b such that M is nonsingular.
(e) Is M diagonalizable? If so, find a diagonalizer.

